def _setup_initial_blobs(self):
# Define models
self.score_model = ModelHelper(name="score_" + self.model_id)
self.train_model = ModelHelper(name="train_" + self.model_id)
# Create input, output, labels, and loss blobs
self.input_blob = "ModelInput_" + self.model_id
workspace.FeedBlob(self.input_blob, np.zeros(1, dtype=np.float32))
self.output_blob = "ModelOutput_" + self.model_id
workspace.FeedBlob(self.output_blob, np.zeros(1, dtype=np.float32))
self.labels_blob = "ModelLabels_" + self.model_id
workspace.FeedBlob(self.labels_blob, np.zeros(1, dtype=np.float32))
self.loss_blob = "loss" # "ModelLoss_" + self.model_id
workspace.FeedBlob(self.loss_blob, np.zeros(1, dtype=np.float32))
# Create blobs for model parameters
self.weights: List[str] = []
self.biases: List[str] = []
for x in six.moves.range(len(self.layers) - 1):
dim_in = self.layers[x]
dim_out = self.layers[x + 1]
weight_name = "Weights_" + str(x) + "_" + self.model_id
bias_name = "Biases_" + str(x) + "_" + self.model_id
self.weights.append(weight_name)
self.biases.append(bias_name)
bias = np.zeros(
shape=[
dim_out,
], dtype=np.float32
)
workspace.FeedBlob(bias_name, bias)
gain = np.sqrt(2) if self.activations[x] == 'relu' else 1
weights = scipy.stats.norm(0, gain * np.sqrt(1 / dim_in)).rvs(
size=[dim_out, dim_in]
).astype(np.float32)
workspace.FeedBlob(weight_name, weights)
评论列表
文章目录