statistics_noise.py 文件源码

python
阅读 24 收藏 0 点赞 0 评论 0

项目:privcount 作者: privcount 项目源码 文件源码
def satisfies_dp(sensitivity, epsilon, delta, std):
    '''
    Return True if (epsilon, delta)-differential privacy is satisfied.
    '''
    # find lowest value at which epsilon differential-privacy is satisfied
    lower_x = -(float(epsilon) * (std**2.0) / sensitivity) + sensitivity/2.0
    # determine lower tail probability of normal distribution w/ mean of zero
    lower_tail_prob = scipy.stats.norm.cdf(lower_x, 0, std)
    # explicitly return Boolean value to avoid returning numpy type
    if (lower_tail_prob <= delta):
        return True
    else:
        return False
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号