def load_images(image_dir, convert_to_grayscale=True, dist="bernoulli"):
dataset = []
fs = os.listdir(image_dir)
print "loading", len(fs), "images..."
for fn in fs:
f = open("%s/%s" % (image_dir, fn), "rb")
if convert_to_grayscale:
img = np.asarray(Image.open(StringIO(f.read())).convert("L"), dtype=np.float32) / 255.0
else:
img = np.asarray(Image.open(StringIO(f.read())).convert("RGB"), dtype=np.float32).transpose(2, 0, 1) / 255.0
if dist == "bernoulli":
# Sampling
img = preprocessing.binarize(img, threshold=0.5)
pass
elif dist == "gaussian":
pass
else:
raise Exception()
dataset.append(img)
f.close()
return dataset
评论列表
文章目录