def make_preprocessing_pandas(self, _df_csv_read_ori, _preprocessing_type , _label):
""" SKLearn? ???? Pandas? Proprocessing
label? Preprocessing ?? ??
Args:
params:
* _preprocessing_type: ['scale', 'minmax_scale', 'robust_scale', 'normalize', 'maxabs_scale']
* _df_csv_read_ori : pandas dataframe
* _label
Returns:
Preprocessing DataFrame
"""
if _preprocessing_type == None or _preprocessing_type == 'null':
logging.info("No Preprocessing")
result_df = _df_csv_read_ori
else :
logging.info("Preprocessing type : {0}".format(_preprocessing_type))
numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
for i, v in _df_csv_read_ori.dtypes.iteritems():
if v in numerics:
if i not in _label:
#preprocessing_types = ['scale', 'minmax_scale', 'robust_scale', 'normalize', 'maxabs_scale']
#_preprocessing_type = ['maxabs_scale']
if 'scale' in _preprocessing_type:
_df_csv_read_ori[i] = preprocessing.scale(_df_csv_read_ori[i].fillna(0.0))
if 'minmax_scale' in _preprocessing_type:
_df_csv_read_ori[i] = preprocessing.minmax_scale(_df_csv_read_ori[i].fillna(0.0))
if 'robust_scale' in _preprocessing_type:
_df_csv_read_ori[i] = preprocessing.robust_scale(_df_csv_read_ori[i].fillna(0.0))
if 'normalize' in _preprocessing_type:
_df_csv_read_ori[i] = preprocessing.normalize(_df_csv_read_ori[i].fillna(0.0))
if 'maxabs_scale' in _preprocessing_type:
_df_csv_read_ori[i] = preprocessing.maxabs_scale(_df_csv_read_ori[i].fillna(0.0))
result_df = _df_csv_read_ori
return result_df
评论列表
文章目录