def test_BRKnna_no_labels_take_closest(self):
data = csr.csr_matrix([[0, 1], [1, 1], [1, 1.1], [0, 1]])
train_ids = [['lid0', 'lid1'], ['lid2', 'lid3'], ['lid2', 'lid3'], ['lid0', 'lid5']]
mlb = MultiLabelBinarizer(sparse_output=True)
y = mlb.fit_transform(train_ids)
knn = BRKNeighborsClassifier(n_neighbors=2, threshold=0.6, mode='a')
knn.fit(data, y)
pred = knn.predict(csr.csr_matrix([[0, 1]])).todense()
print(pred)
np.testing.assert_array_equal([[1, 0, 0, 0, 0]], pred)
评论列表
文章目录