def __init__(self, model_module, weights_path, evaluation_strategy="s2"):
"""
Test metadata format
---------------------
filename : string
class_ids: string of ints with space as a delimiter
"""
test_dataset = pd.read_csv(IRMAS_TESTING_META_PATH, names=["filename", "class_ids"])
self.X = list(test_dataset.filename)
targets = [[int(category) for category in target.split()] for target in test_dataset.class_ids]
self.ml_binarizer = MultiLabelBinarizer().fit(targets)
self.y_true = self.ml_binarizer.transform(targets)
self.y_pred = np.zeros(shape=self.y_true.shape)
self.y_pred_raw = np.zeros(shape=self.y_true.shape)
self.y_pred_raw_average = np.zeros(shape=self.y_true.shape)
self.model_module = model_module
self.weights_path = weights_path
self.feature_filenames = os.listdir(os.path.join(IRMAS_TEST_FEATURE_BASEPATH, model_module.BASE_NAME))
self.dataset_mean = np.load(os.path.join(MODEL_MEANS_BASEPATH, "{}_mean.npy".format(model_module.BASE_NAME)))
self.evaluation_strategy = evaluation_strategy
self.thresholds_s1 = [0.10, 0.12, 0.14, 0.16, 0.18, 0.20, 0.22, 0.24]
self.thresholds_s2 = [0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60]
评论列表
文章目录