def main():
plt.figure()
for j in range(1,6):
random_state = np.random.RandomState(0)
X,y = load_file(file_name,j)
k = 2
# y = label_binarize(y, classes=[0, 1, 2])
# n_classes = y.shape[1]
# print n_classes
n_classes = 2
ylabel, ave= transformtolabel(y,k)
ylabel = np.array(ylabel)
# ylabel = np.transpose(ylabel)
# shuffle and split training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, ylabel, test_size=.5,
random_state=0)
# Learn to predict each class against the other
classifier = OneVsRestClassifier(svm.SVC(kernel='rbf', probability=True,
random_state=random_state))
y_score = classifier.fit(X_train, y_train).decision_function(X_test)
# Compute ROC curve and ROC area for each class
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
# print y_test[i]
fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
# Compute micro-average ROC curve and ROC area
fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_score.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
# print fpr[1]
##############################################################################
# Plot of a ROC curve for a specific class
# plt.figure()
# plt.plot(fpr[0], tpr[0], label='CO below %0.2f' % ave +' (area = %0.2f)' %roc_auc[0])
plt.plot(fpr[1], tpr[1], label='O3 prediction (area = %0.2f)' %roc_auc[1]+'(%0.0f'% j+' features)')
plt.plot([0, 1], [0, 1], 'k--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.0])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic for SVM')
plt.legend(loc="lower right")
plt.show()
评论列表
文章目录