def test_roc_auc_score():
iris=load_iris()
X=iris.data
y=iris.target
y = label_binarize(y, classes=[0, 1, 2])
n_classes = y.shape[1]
np.random.seed(0)
n_samples, n_features = X.shape
X = np.c_[X, np.random.randn(n_samples, 200 * n_features)]
X_train,X_test,y_train,y_test=train_test_split(X,y,
test_size=0.5,random_state=0)
clf=OneVsRestClassifier(SVC(kernel='linear', probability=True,random_state=0))
clf.fit(X_train,y_train)
y_score = clf.fit(X_train, y_train).decision_function(X_test)
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
fpr = dict()
tpr = dict()
roc_auc=dict()
for i in range(n_classes):
fpr[i], tpr[i], _ = roc_curve(y_test[:, i],y_score[:, i])
roc_auc[i] = roc_auc_score(fpr[i], tpr[i])
ax.plot(fpr[i],tpr[i],label="target=%s,auc=%s"%(i,roc_auc[i]))
ax.plot([0, 1], [0, 1], 'k--')
ax.set_xlabel("FPR")
ax.set_ylabel("TPR")
ax.set_title("ROC")
ax.legend(loc="best")
ax.set_xlim(0,1.1)
ax.set_ylim(0,1.1)
ax.grid()
plt.show()
评论列表
文章目录