def roc(y_true, y_pred, classes=[0, 1, 2, 3, 4]):
y_true = label_binarize(y_true, classes=classes)
y_pred = label_binarize(y_pred, classes=classes)
n_classes = len(classes)
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
fpr[i], tpr[i], _ = roc_curve(y_true[:, i], y_pred[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
# Compute micro-average ROC curve and ROC area
fpr["micro"], tpr["micro"], _ = roc_curve(y_true.ravel(), y_pred.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
return roc_auc
评论列表
文章目录