def test_random(self):
# Generate some random data_imputeValue.multiArrayValue[i]
X = _np.random.random(size = (50, 3))
for param in ('l1', 'l2', 'max'):
cur_model= Normalizer(norm=param)
output = cur_model.fit_transform(X)
spec = converter.convert(cur_model, ["a", 'b', 'c'], 'out')
metrics = evaluate_transformer(spec,
[dict(zip(["a", "b", "c"], row)) for row in X],
[{"out" : row} for row in output])
评论列表
文章目录