def decompose(doc_vecs, n_features=100, normalize=False, flip=False):
svd = TruncatedSVD(n_features)
if normalize:
if flip:
lsa = make_pipeline(svd, Normalizer(copy=False))
doc_mat = lsa.fit_transform(doc_vecs.transpose())
doc_mat = doc_mat.transpose()
else:
lsa = make_pipeline(svd, Normalizer(copy=False))
doc_mat = lsa.fit_transform(doc_vecs)
return doc_mat
else:
if flip:
doc_mat = svd.fit_transform(doc_vecs.transpose())
doc_mat = doc_mat.transpose()
else:
doc_mat = svd.fit_transform(doc_vecs)
return doc_mat
评论列表
文章目录