def predict(self, X):
y_pred = np.zeros((X.shape[0], self.n_estimators))
for i in range(self.n_estimators):
fidx = self.feature_idx_list[i]
ridge = self.ridge_list[i]
X_tmp = X[:,fidx]
if self.poly:
X_tmp = PolynomialFeatures(degree=2).fit_transform(X_tmp)[:,1:]
y_pred[:,i] = ridge.predict(X_tmp)
y_pred = np.mean(y_pred, axis=1)
return y_pred
评论列表
文章目录