def send_data(self):
if self.data is not None:
attributes = self.x_var_model[self.x_var_index]
class_var = self.y_var_model[self.y_var_index]
data_table = Table(
Domain([attributes], class_vars=[class_var]), self.data)
polyfeatures = skl_preprocessing.PolynomialFeatures(
int(self.polynomialexpansion))
valid_mask = ~np.isnan(data_table.X).any(axis=1)
x = data_table.X[valid_mask]
x = polyfeatures.fit_transform(x)
x_label = data_table.domain.attributes[0].name
out_array = np.concatenate((x, data_table.Y[np.newaxis].T[valid_mask]), axis=1)
out_domain = Domain(
[ContinuousVariable("1")] + ([data_table.domain.attributes[0]]
if self.polynomialexpansion > 0
else []) +
[ContinuousVariable("{}^{}".format(x_label, i))
for i in range(2, int(self.polynomialexpansion) + 1)], class_vars=[class_var])
self.Outputs.data.send(Table(out_domain, out_array))
return
self.Outputs.data.send(None)
owpolynomialregression.py 文件源码
python
阅读 29
收藏 0
点赞 0
评论 0
评论列表
文章目录