def test_conversion_boston(self):
from sklearn.datasets import load_boston
scikit_data = load_boston()
sh = scikit_data.data.shape
rn.seed(0)
missing_value_indices = [(rn.randint(sh[0]), rn.randint(sh[1]))
for k in range(sh[0])]
for strategy in ["mean", "median", "most_frequent"]:
for missing_value in [0, 'NaN', -999]:
X = np.array(scikit_data.data).copy()
for i, j in missing_value_indices:
X[i,j] = missing_value
model = Imputer(missing_values = missing_value, strategy = strategy)
model = model.fit(X)
tr_X = model.transform(X.copy())
spec = converter.convert(model, scikit_data.feature_names, 'out')
input_data = [dict(zip(scikit_data.feature_names, row))
for row in X]
output_data = [{"out" : row} for row in tr_X]
result = evaluate_transformer(spec, input_data, output_data)
assert result["num_errors"] == 0
评论列表
文章目录