def _partial_fit(self, X, y, classes=None, first_partial_fit=None):
if first_partial_fit and not classes:
raise ValueError("classes must be passed on the first call "
"to partial_fit.")
if not self.is_fitted:
self.alpha_sum_ = X.shape[1] * self.alpha
if classes:
self.classes_ = classes
lb = LabelBinarizer()
y_one_hot = lb.fit_transform(y)
self.class_count_ = np.sum(y_one_hot, axis=0)
if not self.classes_:
self.classes_ = lb.classes_
#self._class_log_prob()
self._update_complement_features(X, y_one_hot)
self.is_fitted = True
评论列表
文章目录