def preprocess(image_shape, image_paths, labels=[]):
features = []
for image_path in tqdm(image_paths):
image_data = list(Image.open(image_path).resize(image_shape[:2]).getdata())
image_data = np.asarray(image_data).reshape(image_shape)
features.append(image_data)
# Normalizer
features = np.asarray(features)
features = features / 255.0
if labels:
# one hot encode
label_binarizer = LabelBinarizer()
labels = label_binarizer.fit_transform(labels)
# Shuffle
features, labels = shuffle(features, labels)
return features, labels
cnn.py 文件源码
python
阅读 23
收藏 0
点赞 0
评论 0
评论列表
文章目录