def compute_preprocessor(self,method):
self.data={}
if method=='none':
self.data=self.orig_data
elif method=='min_max':
transform=preprocessing.MinMaxScaler()
self.data['X_train']=transform.fit_transform(self.orig_data['X_train'])
self.data['X_val']=transform.transform(self.orig_data['X_val'])
self.data['X_test']=transform.transform(self.orig_data['X_test'])
elif method=='scaled':
self.data['X_train']=preprocessing.scale(self.orig_data['X_train'])
self.data['X_val']=preprocessing.scale(self.orig_data['X_val'])
self.data['X_test']=preprocessing.scale(self.orig_data['X_test'])
elif method=='normalized':
self.data['X_train']=preprocessing.normalize(self.orig_data['X_train'])
self.data['X_val']=preprocessing.normalize(self.orig_data['X_val'])
self.data['X_test']=preprocessing.normalize(self.orig_data['X_test'])
self.data['y_train']=self.orig_data['y_train']
self.data['y_val']=self.orig_data['y_val']
self.data['y_test']=self.orig_data['y_test']
random_features_helper.py 文件源码
python
阅读 28
收藏 0
点赞 0
评论 0
评论列表
文章目录