def predict_image(self, test_img):
"""
predicts classes of input image
:param test_img: filepath to image to predict on
:param show: displays segmentation results
:return: segmented result
"""
img = np.array( rgb2gray( imread( test_img ).astype( 'float' ) ).reshape( 5, 216, 160 )[-2] ) / 256
plist = []
# create patches from an entire slice
img_1 = adjust_sigmoid( img ).astype( float )
edges_1 = adjust_sigmoid( img, inv=True ).astype( float )
edges_2 = img_1
edges_5_n = normalize( laplace( img_1 ) )
edges_5_n = img_as_float( img_as_ubyte( edges_5_n ) )
plist.append( extract_patches_2d( edges_1, (23, 23) ) )
plist.append( extract_patches_2d( edges_2, (23, 23) ) )
plist.append( extract_patches_2d( edges_5_n, (23, 23) ) )
patches = np.array( zip( np.array( plist[0] ), np.array( plist[1] ), np.array( plist[2] ) ) )
# predict classes of each pixel based on model
full_pred = self.model.predict_classes( patches )
fp1 = full_pred.reshape( 194, 138 )
return fp1
edge_detector_cnn.py 文件源码
python
阅读 19
收藏 0
点赞 0
评论 0
评论列表
文章目录