def trainingPCA(features, n_components=256, whiten=True, pca_model_name=None):
print 'loaded features! {}'.format(features.shape)
print np.sqrt(sum(features[0,:]**2))
#print 'Features l2 normalization'
#features = normalize(features)
#print np.sqrt(sum(features[0,:]**2))
print 'Feature PCA-whitenning'
pca_model = PCA(n_components=n_components, whiten=whiten)
features = pca_model.fit_transform(features)
print np.sqrt(sum(features[0,:]**2))
print 'Features l2 normalization'
features = normalize(features)
print np.sqrt(sum(features[0,:]**2))
if pca_model_name is not None:
print 'saving model...'
check_path_file(pca_model_name, create_if_missing=True)
save_obj(pca_model, pca_model_name)
print 'done! {}'.format(pca_model_name)
return pca_model
评论列表
文章目录