def load_pretrained():
#glove_vec = ["glove_wiki_50","glove_wiki_150","glove_wiki_300"]
glove_vec = ["glove_wiki_300"]
#glove_vec = ["glove_wiki_50"]
filename = 'glove_pretrained.h5'
#import tensorflow as tf
#sess = tf.InteractiveSession()
features, words = load_h5py('glove_wiki_300',filename=root + glove_vec_fold + filename)
filename = 'glove.h5'
features = normalize(np.array(features), axis=1, norm='l2')
with h5py.File(root + glove_vec_fold + filename, "w") as hf:
hf.create_dataset(glove_vec[0], data=features)
string_dt = h5py.special_dtype(vlen=str)
hf.create_dataset(glove_vec[0] + "_words", data=words, dtype=string_dt)
for vec in glove_vec:
data, words = load_h5py(vec, filename=root + glove_vec_fold + "glove.h5")
print(data.shape, words.shape)
time.sleep(5)
load_langmod.py 文件源码
python
阅读 23
收藏 0
点赞 0
评论 0
评论列表
文章目录