def svc_lin_xyatu(df_cell_train_feats, y_train, df_cell_test_feats):
def prepare_feats(df):
df_new = pd.DataFrame()
df_new["x"] = df["x"]
df_new["y"] = df["y"]
df_new["hour"] = df["hour"]
df_new["weekday"] = df["weekday"]
df_new["accuracy"] = df["accuracy"]
return preprocessing.scale(df_new.values)
logging.info("train svc_lin_xyatu model")
clf = SVC(kernel='linear', probability=True, cache_size=3000)
clf.fit(prepare_feats(df_cell_train_feats), y_train)
y_test_pred = clf.predict_proba(prepare_feats(df_cell_test_feats))
return y_test_pred
model.py 文件源码
python
阅读 22
收藏 0
点赞 0
评论 0
评论列表
文章目录