def create_model(context, data):
# Get the relevant daily prices
recent_prices = data.history(context.assets, 'price',context.history_range, '1d')
context.ma_50 =recent_prices.values[-50:].mean()
context.ma_200 = recent_prices.values[-200:].mean()
#print context.ma_50
#print context.ma_200
time_lags = pd.DataFrame(index=recent_prices.index)
time_lags['price']=recent_prices.values
time_lags['returns']=(time_lags['price'].pct_change()).fillna(0.0001)
time_lags['lag1'] = (time_lags['returns'].shift(1)).fillna(0.0001)
time_lags['lag2'] = (time_lags['returns'].shift(2)).fillna(0.0001)
time_lags['direction'] = np.sign(time_lags['returns'])
X = time_lags[['returns','lag2']] # Independent, or input variables
Y = time_lags['direction'] # Dependent, or output variable
X_scaled = preprocessing.scale(X)
context.model.fit(X_scaled, Y) # Generate our model
strategy6_scaling+.py 文件源码
python
阅读 20
收藏 0
点赞 0
评论 0
评论列表
文章目录