def load_data(fname='transit_data_train.pkl',categorical=False,whiten=True,DIR='pickle_data/'):
data = pickle.load(open(DIR+fname,'rb'))
# convert to numpy array fo float type from object type
pvals = arr(data['results'][:,0])
transits = arr(data['results'][:,1])
null = arr(data['results'][:,2])
X = np.vstack([transits,null])
y = np.hstack([np.ones(transits.shape[0]), np.zeros(null.shape[0])] )
if categorical: y = np_utils.to_categorical(y, np.unique(y).shape[0] )
if whiten: X = preprocessing.scale(X,axis=1)
return X,y,pvals,data['keys'],data['time']
generate_data.py 文件源码
python
阅读 22
收藏 0
点赞 0
评论 0
评论列表
文章目录