def __init__(self, penalty='l2', dual=False, tol=1e-4, C=1.0,
fit_intercept=True, intercept_scaling=1, class_weight=None,
random_state=None, solver='liblinear', max_iter=100,
multi_class='ovr', verbose=0, warm_start=False, n_jobs=1):
self.penalty = penalty
self.dual = dual
self.tol = tol
self.C = C
self.fit_intercept = fit_intercept
self.intercept_scaling = intercept_scaling
self.class_weight = class_weight
self.random_state = random_state
self.solver = solver
self.max_iter = max_iter
self.multi_class = multi_class
self.verbose = verbose
self.warm_start = warm_start
self.n_jobs = n_jobs
self.minmax_scaler = MinMaxScaler()
self.dsapp_cutoff = CutOff()
self.lr = LogisticRegression(penalty=penalty,
dual=dual,
tol=tol,
C=C,
fit_intercept=fit_intercept,
intercept_scaling=intercept_scaling,
class_weight=class_weight,
random_state=random_state,
solver=solver,
max_iter=max_iter,
multi_class=multi_class,
verbose=verbose,
warm_start=warm_start,
n_jobs=n_jobs)
self.pipeline = Pipeline([
('minmax_scaler', self.minmax_scaler),
('dsapp_cutoff', self.dsapp_cutoff),
('lr', self.lr)
])
评论列表
文章目录