def get_train_test( X, pca_order = 10):
X = X.astype('float32')
scaler = MinMaxScaler(feature_range=(0, 1))
X = scaler.fit_transform(X.reshape(-1,1)).reshape( X.shape)
if pca_order > 0:
pca = PCA(3)
X = pca.fit_transform(X)
X = pca.inverse_transform(X)
n_samples = X.shape[0]
train_size = int(n_samples * 0.67)
test_size = n_samples - train_size
train, test = X[0:train_size,:], X[train_size:n_samples,:]
return train, test, scaler
评论列表
文章目录