def get_today_data_for_MLP(code):
'''
:param code:????
:return: ?????X
'''
import numpy as np
data_path = "./data/stock_data/"
oneDayLine, date = load_data_from_tushare(data_path + str(code) + '.csv')
volumn, volumn_dates = load_volume_from_tushare(data_path + str(code) + '.csv')
daynum = 5
X = []
ef = Extract_Features()
for i in range(daynum, len(date)):
X_delta = [oneDayLine[k] - oneDayLine[k - 1] for k in range(i - daynum, i)] + \
[volumn[k] for k in range(i - daynum, i)] + \
[float(ef.parse_weekday(date[i]))] + \
[float(ef.lunar_month(date[i]))] + \
[ef.rrr(date[i])] + \
[ef.MoneySupply(date[i])]
X.append(X_delta)
X = preprocessing.MinMaxScaler().fit_transform(X)
return np.array(X[-1])
评论列表
文章目录