def extract_train_and_validation_data(self,num_labels):
data = pd.read_csv(self.train_data_filename, header=0).values
# convert to Numpy array forms
feature_vec = data[0::,1::]
labels = data[0::,0]
# mean normalize features
min_max_scaler = preprocessing.MinMaxScaler()
feature_vec = min_max_scaler.fit_transform(feature_vec.T).T
# convert to one hot form for labels
labels_onehot = (np.arange(num_labels) == labels[:, None]).astype(np.float32)
# divide data into train and validation data
self.train_X, self.val_X, self.train_y, self.val_y = train_test_split(\
feature_vec, labels_onehot,
test_size=0.2, random_state=42)
评论列表
文章目录