def __init__(self, mins=None, maxs=None):
from sklearn.preprocessing import MinMaxScaler
self.scaler_ = MinMaxScaler()
if mins is not None:
assert isinstance(mins, np.ndarray)
if mins.ndim == 1:
mins = mins.reshape(1, -1)
self.scaler_.partial_fit(mins)
self.mins_ = mins
else:
self.mins_ = None
if maxs is not None:
assert isinstance(maxs, np.ndarray)
if maxs.ndim == 1:
maxs = maxs.reshape(1, -1)
self.scaler_.partial_fit(maxs)
self.maxs_ = maxs
else:
self.maxs_ = None
if self.mins_ is not None and self.maxs_ is not None:
self.fitted_ = True
else:
self.fitted_ = False
评论列表
文章目录