def get_input(self):
# Input data.
# Load the training, validation and test data into constants that are
# attached to the graph.
self.x_train, self.y_train,self.x_validation,self.y_validation = self.get_train_validationset()
self.x_train, self.y_train,self.x_validation,self.y_validation = self.x_train.as_matrix(), self.y_train.as_matrix().reshape((-1,1)),\
self.x_validation.as_matrix(),self.y_validation.as_matrix().reshape((-1,1))
# self.x_train, self.y_train,self.x_validation,self.y_validation = self.x_train.astype(np.float32), self.y_train.astype(np.float32),\
# self.x_validation.astype(np.float32),self.y_validation.astype(np.float32)
sc = MinMaxScaler()
sc.fit(self.x_train)
self.x_train= sc.transform(self.x_train)
self.x_validation= sc.transform(self.x_validation)
self.inputlayer_num = len(self.get_used_features())
self.outputlayer_num = 1
# Input placehoolders
with tf.name_scope('input'):
self.x = tf.placeholder(tf.float32, [None, self.inputlayer_num], name='x-input')
self.y_true = tf.placeholder(tf.float32, [None, self.outputlayer_num ], name='y-input')
self.keep_prob = tf.placeholder(tf.float32, name='drop_out')
return
didineuralmodel.py 文件源码
python
阅读 24
收藏 0
点赞 0
评论 0
评论列表
文章目录