train.py 文件源码

python
阅读 22 收藏 0 点赞 0 评论 0

项目:YOLO-Object-Detection-Tensorflow 作者: huseinzol05 项目源码 文件源码
def get_dataset():

    list_folder = os.listdir('data/')
    list_images = []
    for i in xrange(len(list_folder)):
        images = os.listdir('data/' + list_folder[i])
        for x in xrange(len(images)):
            image = [list_folder[i] + '/' + images[x], list_folder[i]]
            list_images.append(image)
    list_images = np.array(list_images)
    np.random.shuffle(list_images)

    print "before cleaning got: " + str(list_images.shape[0]) + " data"

    list_temp = []
    for i in xrange(list_images.shape[0]):
        image = misc.imread('data/' + list_images[i, 0])
        if len(image.shape) < 3:
            continue
        list_temp.append(list_images[i, :].tolist())

    list_images = np.array(list_temp)
    print "after cleaning got: " + str(list_images.shape[0]) + " data"
    label = np.unique(list_images[:, 1]).tolist()
    list_images[:, 1] = LabelEncoder().fit_transform(list_images[:, 1])
    return list_images, np.unique(list_images[:, 1]).shape[0], label
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号