def fit(self, X, y):
le = preprocessing.LabelEncoder()
y = le.fit_transform(y)
self.num_classes = np.unique(y).shape[0]
sf = xgb.DMatrix(X, y)
params = {"objective": 'multi:softprob',
"eta": self.eta,
"gamma": self.gamma,
"max_depth": self.max_depth,
"min_child_weight": self.min_child_weight,
"max_delta_step": self.max_delta_step,
"subsample": self.subsample,
"silent": self.silent,
"colsample_bytree": self.colsample_bytree,
"seed": self.seed,
"lambda": self.l2_reg,
"alpha": self.l1_reg,
"num_class": self.num_classes}
self.model = xgb.train(params, sf, self.num_round)
return self
models.py 文件源码
python
阅读 18
收藏 0
点赞 0
评论 0
评论列表
文章目录