def addDailyReturn(dataset):
"""
Adding in daily return to create binary classifiers (Up or Down in relation to the previous day)
"""
#will normalize labels
le = preprocessing.LabelEncoder()
#print "dataset['Adj_Close']\n", dataset['Adj_Close'][:5]
#print "dataset['Adj_Close'].shift(-1)\n", dataset['Adj_Close'].shift(1)[:5]
dataset['UpDown'] = (dataset['Adj_Close']-dataset['Adj_Close'].shift(1))/dataset['Adj_Close'].shift(1)
#print dataset['UpDown'][240:]
# will be denoted by 3 when transformed
dataset.UpDown[dataset.UpDown > 0] = "sell"
dataset.UpDown[dataset.UpDown == 0] = "hold"
dataset.UpDown[dataset.UpDown < 0] = "buy"
#print dataset['UpDown'][:10]
dataset.UpDown = le.fit(dataset.UpDown).transform(dataset.UpDown)
#print dataset['UpDown']
评论列表
文章目录