def test_predict_from_file():
from microtc.wrappers import ClassifierWrapper
from microtc.textmodel import TextModel
from microtc.utils import read_data_labels
from sklearn.preprocessing import LabelEncoder
import os
fname = os.path.dirname(__file__) + '/text.json'
corpus, labels = read_data_labels(fname)
t = TextModel(corpus)
le = LabelEncoder()
le.fit(labels)
y = le.transform(labels)
c = ClassifierWrapper()
X = [t[x] for x in corpus]
c.fit(X, y)
hy = le.inverse_transform(c.predict(X))
for i in hy:
assert i in ['POS', 'NEU', 'NEG']
评论列表
文章目录