def get_standardized_wine_data():
df = pd.read_csv(os.path.join('datasets', 'wine.data'), header=None)
df.columns = [
'Class label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash',
'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols',
'Proanthocyanins', 'Color intensity', 'Hue',
'OD280/OD315 of diluted wines', 'Proline',
]
X = df.iloc[:, 1:].values
y = df.iloc[:, 0].values
X_train, X_test, y_train, y_test = train_test_split(
X,
y,
test_size=0.3,
random_state=0,
)
sc = StandardScaler()
X_train_std = sc.fit_transform(X_train)
X_test_std = sc.transform(X_test)
return X_train_std, X_test_std, y_train, y_test
评论列表
文章目录