def fit_model(self, logging_uuid, model=None, epochs=1000, batch_size=10):
if model is not None:
self.model = model
X, y, _ = self.get_formulation_training_data()
scaler = StandardScaler().fit(X)
lcb = LambdaCallback(
on_epoch_end=
lambda epoch, logs:
r.set(logging_uuid, json.dumps({'model_state': 'training',
'epoch': epoch,
'epochs': epochs,
'loss': logs['loss']})),
on_train_end=
lambda logs:
r.set(logging_uuid, json.dumps({'model_state': 'training',
'epoch': epochs,
'epochs': epochs})),
)
self.fit_history = self.model.fit(scaler.transform(X), y,
epochs=epochs,
batch_size=batch_size,
verbose=0,
callbacks=[lcb])
return self.model, self.fit_history
评论列表
文章目录