def make_x_y(self, data, code):
data_x = []
data_y = []
data.loc[:, 'month'] = data.loc[:, '??']%10000/100
data = data.drop(['??', '????'], axis=1)
# normalization
data = np.array(data)
if len(data) <= 0 :
return np.array([]), np.array([])
if code not in self.scaler:
self.scaler[code] = StandardScaler()
data = self.scaler[code].fit_transform(data)
elif code not in self.scaler:
return np.array([]), np.array([])
else:
data = self.scaler[code].transform(data)
for i in range(self.frame_len, len(data)-self.predict_dist+1):
data_x.extend(np.array(data[i-self.frame_len:i, :]))
data_y.append(data[i+self.predict_dist-1][0])
np_x = np.array(data_x).reshape(-1, 23*self.frame_len)
np_y = np.array(data_y)
return np_x, np_y
评论列表
文章目录