def dataset_generator():
"""
generate dataset for binary classification
:return:
"""
X, y = make_classification(n_features=2, n_redundant=0, n_informative=2,
random_state=1, n_clusters_per_class=1)
rng = np.random.RandomState(2)
X += 2 * rng.uniform(size=X.shape)
linearly_separable = (X, y)
datasets = [make_moons(noise=0.3, random_state=0),
make_circles(noise=0.2, factor=0.5, random_state=1),
linearly_separable
]
X, y = datasets[0]
y[y == 0] = -1
X = StandardScaler().fit_transform(X)
return X, y
GP_binary_classification.py 文件源码
python
阅读 18
收藏 0
点赞 0
评论 0
评论列表
文章目录