def test_boston_OHE_plus_normalizer(self):
data = load_boston()
pl = Pipeline([
("OHE", OneHotEncoder(categorical_features = [8], sparse=False)),
("Scaler",StandardScaler())])
pl.fit(data.data, data.target)
# Convert the model
spec = convert(pl, data.feature_names, 'out')
input_data = [dict(zip(data.feature_names, row)) for row in data.data]
output_data = [{"out" : row} for row in pl.transform(data.data)]
result = evaluate_transformer(spec, input_data, output_data)
assert result["num_errors"] == 0
评论列表
文章目录