def trainValidationSplit(dic_pho_feature_train,validation_size=0.2):
'''
split the feature in dic_pho_feature_train into train and validation set
:param dic_pho_feature_train: input dictionary, key: phoneme, value: feature vectors
:return:
'''
feature_all = []
label_all = []
for key in dic_pho_feature_train:
feature = dic_pho_feature_train[key]
label = [dic_pho_label[key]] * len(feature)
if len(feature):
if not len(feature_all):
feature_all = feature
else:
feature_all = np.vstack((feature_all, feature))
label_all += label
label_all = np.array(label_all,dtype='int64')
feature_all = preprocessing.StandardScaler().fit_transform(feature_all)
feature_train, feature_validation, label_train, label_validation = \
train_test_split(feature_all, label_all, test_size=validation_size, stratify=label_all)
return feature_train, feature_validation, label_train, label_validation
acousticModelTraining.py 文件源码
python
阅读 31
收藏 0
点赞 0
评论 0
评论列表
文章目录