def load_data(data_dir, num_files=30):
files_list = os.listdir(data_dir)
dataset = []
ac_dataset = []
for fname in files_list[:num_files]:
#print(fname)
f = os.path.join(data_dir, fname)
with netcdf.netcdf_file(f, 'r') as fid:
m = fid.variables['outputMeans'][:].copy()
s = fid.variables['outputStdevs'][:].copy()
feats = fid.variables['targetPatterns'][:].copy()
ac_feats = fid.variables['inputs'][:].copy()
scaler = preprocessing.StandardScaler()
scaler.mean_ = m
scaler.scale_ = s
feats = scaler.inverse_transform(feats)
assert feats.shape[0] == ac_feats.shape[0]
dataset.extend(feats)
ac_dataset.extend(ac_feats)
dataset = np.asarray(dataset)
ac_dataset = np.asarray(ac_dataset)
#print(dataset.shape, ac_dataset.shape)
return dataset, ac_dataset
评论列表
文章目录