def load_data(data_dir, num_files=30):
files_list = os.listdir(data_dir)
data = None
for fname in files_list[:num_files]:
print fname
f = os.path.join(data_dir, fname)
with netcdf.netcdf_file(f, 'r') as fid:
m = fid.variables['outputMeans'][:].copy()
s = fid.variables['outputStdevs'][:].copy()
feats = fid.variables['targetPatterns'][:].copy()
scaler = preprocessing.StandardScaler()
scaler.mean_ = m
scaler.scale_ = s
feats = scaler.inverse_transform(feats)
if data == None:
data = feats
else:
data = np.vstack((data, feats))
return data
评论列表
文章目录