def load_data(data_dir, num_files=30):
files_list = os.listdir(data_dir)
data = None
ac_data = None
for fname in files_list[:num_files]:
print fname
f = os.path.join(data_dir, fname)
with netcdf.netcdf_file(f, 'r') as fid:
m = fid.variables['outputMeans'][:].copy()
s = fid.variables['outputStdevs'][:].copy()
feats = fid.variables['targetPatterns'][:].copy()
ac_feats = fid.variables['inputs'][:].copy()
scaler = preprocessing.StandardScaler()
scaler.mean_ = m
scaler.scale_ = s
feats = scaler.inverse_transform(feats)
assert feats.shape[0] == ac_feats.shape[0]
# feats = np.concatenate((feats,ac_feats),axis=1)
if data == None and ac_data == None:
data = feats
ac_data = ac_feats
else:
data = np.vstack((data, feats))
ac_data = np.vstack((ac_data, ac_feats))
return data, ac_data
评论列表
文章目录