def load(cls,
model_dir, # type: Text
model_metadata, # type: Metadata
cached_component, # type: Optional[CRFEntityExtractor]
**kwargs # type: **Any
):
# type: (...) -> CRFEntityExtractor
from sklearn.externals import joblib
if model_dir and model_metadata.get("entity_extractor_crf"):
meta = model_metadata.get("entity_extractor_crf")
ent_tagger = joblib.load(os.path.join(model_dir, meta["model_file"]))
return CRFEntityExtractor(ent_tagger=ent_tagger,
entity_crf_features=meta['crf_features'],
entity_crf_BILOU_flag=meta['BILOU_flag'])
else:
return CRFEntityExtractor()
评论列表
文章目录