def compute_sgd(data):
logging.info('Computing SGD')
n_splits = 10
folder = StratifiedKFold(n_splits=n_splits, shuffle=True)
for ix_first, ix_second in tqdm_notebook(folder.split(np.zeros(data['y_train'].shape[0]), data['y_train']),
total=n_splits):
# {'en__l1_ratio': 0.0001, 'en__alpha': 1e-05}
model = SGDClassifier(
loss='log',
penalty='elasticnet',
fit_intercept=True,
n_iter=100,
shuffle=True,
n_jobs=-1,
l1_ratio=0.0001,
alpha=1e-05,
class_weight=None)
model = model.fit(data['X_train'][ix_first, :], data['y_train'][ix_first])
data['y_train_pred'][ix_second] = logit(model.predict_proba(data['X_train'][ix_second, :])[:, 1])
data['y_test_pred'].append(logit(model.predict_proba(data['X_test'])[:, 1]))
data['y_test_pred'] = np.array(data['y_test_pred']).T.mean(axis=1)
return data
mephistopheies.py 文件源码
python
阅读 22
收藏 0
点赞 0
评论 0
评论列表
文章目录