def ka_bagging_2class_or_reg_lgbm(X_train, y_train, seed, bag_round, params
, X_test, using_notebook=True, num_boost_round=0):
'''
early version
'''
# create array object to hold predictions
baggedpred=np.zeros(shape=X_test.shape[0]).astype(np.float32)
#loop for as many times as we want bags
if using_notebook:
for n in tqdm_notebook(range(0, bag_round)):
#shuffle first, aids in increasing variance and forces different results
X_train, y_train=shuffle(X_train, y_train, random_state=seed+n)
params['seed'] = seed + n
model = lightgbm.train(params, lightgbm.Dataset(X_train, y_train), num_boost_round=num_boost_round)
pred = model.predict(X_test)
baggedpred += pred/bag_round
return baggedpred
评论列表
文章目录