def test_memory(insertions, samples, img_shape, misc_len, batch_size, capacity, img_dtype=np.float32):
print("image shape:", img_shape)
print("misc vector lenght:", misc_len)
print("batchsize:", batch_size)
print("capacity:", capacity)
print("image data type:", img_dtype.__name__)
memory = ReplayMemory(img_shape, misc_len, capacity, batch_size)
if img_dtype != np.float32:
s = [(np.random.random(img_shape) * 255).astype(img_dtype), np.random.random(misc_len).astype(np.float32)]
s2 = [(np.random.random(img_shape) * 255).astype(img_dtype), np.random.random(misc_len).astype(np.float32)]
else:
s = [np.random.random(img_shape).astype(img_dtype), np.random.random(misc_len).astype(np.float32)]
s2 = [np.random.random(img_shape).astype(img_dtype), np.random.random(misc_len).astype(np.float32)]
a = 0
r = 1.0
terminal = False
for _ in trange(capacity, leave=False, desc="Prefilling memory."):
memory.add_transition(s, a, s2, r, terminal)
start = time()
for _ in trange(insertions, leave=False, desc="Testing insertions speed"):
memory.add_transition(s, a, s2, r, terminal)
inserts_time = time() - start
start = time()
for _ in trange(samples, leave=False, desc="Testing sampling speed"):
sample = memory.get_sample()
sample_time = time() - start
print("\t{:0.1f} insertions/s. 1k insertions in: {:0.2f}s".format(insertions / inserts_time,
inserts_time / insertions * 1000))
print("\t{:0.1f} samples/s. 1k samples in: {:0.2f}s".format(samples / sample_time, sample_time / samples * 1000))
print()
test_memory_preformance.py 文件源码
python
阅读 17
收藏 0
点赞 0
评论 0
评论列表
文章目录