def process_data(root_path, symbols, dates):
negative_pect = {}
stock_memory = {}
symbol_memory = {}
range_len = 3
my_range = range(-1, -200, -1)
#pbar = tqdm(total=len(my_range))
pbar = trange(len(my_range))
out_path = root_path + "/Data/CSV/target/"
if os.path.exists(out_path) == False:
os.mkdir(out_path)
for index in my_range:
day_range = [ dates[idx] for idx in range(index-range_len, index+1) ]
file_name = out_path + day_range[-1] + ".csv"
if os.path.exists(file_name):
stock_filter = pd.read_csv(file_name, index_col=0)
else:
db_cashflow = process_all_stocks_data(root_path, symbols, day_range, stock_memory, symbol_memory, index, range_len)
stock_filter = filter_cashflow(db_cashflow)
if len(stock_filter) > 0:
stock_filter.to_csv(file_name)
negative_pect[day_range[-1]] = get_result(stock_filter)
# outMessage = '%-*s processed in: %.4s seconds' % (6, index, (time.time() - startTime))
# pbar.set_description(outMessage)
pbar.update(1)
pbar.close()
print(negative_pect)
Filter_Stock_Cashflow_CHN.py 文件源码
python
阅读 20
收藏 0
点赞 0
评论 0
评论列表
文章目录