def load_to_ram(self, is_training):
len_keys = self.len_train_keys if is_training else self.len_val_keys
labs = np.empty([len_keys, 4], dtype=np.int32)
poses = np.empty([len_keys,self.pshape[0],self.pshape[1],self.max_plen], dtype=np.float32)
random_crop_bkp = self.random_crop
random_pick_bkp = self.random_pick
self.random_crop = False
self.random_pick = False
splitname = 'train' if is_training else 'val'
print('Loading "%s" data to ram...' % splitname)
t = trange(len_keys, dynamic_ncols=True)
for k in t:
key_idx, subject, action, pose, plen = self.read_h5_data(k, is_training)
pose = pose[:, :, :self.max_plen] if plen > self.max_plen else pose
plen = self.max_plen if plen > self.max_plen else plen
labs[k, :] = [key_idx, subject, action, plen]
poses[k, :, :, :plen] = pose
self.random_crop = random_crop_bkp
self.random_pick = random_pick_bkp
return labs, poses
评论列表
文章目录