def create_cnn_network(input_dim):
'''Base network to be shared (eq. to feature extraction).
'''
seq = Sequential()
nb_filter = [12, 6]
kern_size = 3
# conv layers
seq.add(Convolution3D(nb_filter[0], kern_size, kern_size, kern_size, input_shape=input_dim,
border_mode='valid', dim_ordering='th', activation='relu'))
# seq.add(MaxPooling3D(pool_size=(2, 2, 2))) # downsample
seq.add(Dropout(.25))
# conv layer 2
# seq.add(Convolution3D(nb_filter[1], kern_size, kern_size, kern_size, border_mode='valid', dim_ordering='th',
# activation='relu'))
# # seq.add(MaxPooling3D(pool_size=(2, 2, 2), dim_ordering='th')) # downsample
# seq.add(Dropout(.25))
# dense layers
seq.add(Flatten())
seq.add(Dense(100, activation='relu'))
seq.add(Dropout(0.2))
seq.add(Dense(50, activation='relu'))
return seq
# load data
评论列表
文章目录