def get_net(input_shape=(CUBE_SIZE, CUBE_SIZE, CUBE_SIZE, 1), load_weight_path=None, features=False, mal=False) -> Model:
inputs = Input(shape=input_shape, name="input_1")
x = inputs
#x = AveragePooling3D(pool_size=(2, 1, 1), strides=(2, 1, 1), border_mode="same")(x)
x = Convolution3D(64, 3, 3, 3, activation='relu', border_mode='same', name='conv1', subsample=(1, 1, 1))(x)
x = MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2), border_mode='valid', name='pool1')(x)
# 2nd layer group
x = Convolution3D(128, 3, 3, 3, activation='relu', border_mode='same', name='conv2', subsample=(1, 1, 1))(x)
x = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), border_mode='valid', name='pool2')(x)
#if USE_DROPOUT:
# x = Dropout(p=0.3)(x)
# 3rd layer group
x = Convolution3D(256, 3, 3, 3, activation='relu', border_mode='same', name='conv3a', subsample=(1, 1, 1))(x)
x = Convolution3D(256, 3, 3, 3, activation='relu', border_mode='same', name='conv3b', subsample=(1, 1, 1))(x)
x = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), border_mode='valid', name='pool3')(x)
#if USE_DROPOUT:
# x = Dropout(p=0.4)(x)
# 4th layer group
x = Convolution3D(512, 3, 3, 3, activation='relu', border_mode='same', name='conv4a', subsample=(1, 1, 1))(x)
x = Convolution3D(512, 3, 3, 3, activation='relu', border_mode='same', name='conv4b', subsample=(1, 1, 1),)(x)
x = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), border_mode='valid', name='pool4')(x)
#if USE_DROPOUT:
# x = Dropout(p=0.5)(x)
last64 = Convolution3D(64, 2, 2, 2, activation="relu", name="last_64")(x)
out_class = Convolution3D(1, 1, 1, 1, activation="sigmoid", name="out_class_last")(last64)
out_class = Flatten(name="out_class")(out_class)
out_malignancy = Convolution3D(1, 1, 1, 1, activation=None, name="out_malignancy_last")(last64)
out_malignancy = Flatten(name="out_malignancy")(out_malignancy)
model = Model(input=inputs, output=[out_class, out_malignancy])
if load_weight_path is not None:
model.load_weights(load_weight_path, by_name=False)
#model.compile(optimizer=SGD(lr=LEARN_RATE, momentum=0.9, nesterov=True), loss={"out_class": "binary_crossentropy", "out_malignancy": mean_absolute_error}, metrics={"out_class": [binary_accuracy, binary_crossentropy], "out_malignancy": mean_absolute_error})
model.compile(optimizer=SGD(lr=LEARN_RATE, momentum=0.9, nesterov=True), loss={"out_class": "binary_crossentropy"}, metrics={"out_class": [binary_accuracy, binary_crossentropy]})
if features:
model = Model(input=inputs, output=[last64])
model.summary(line_length=140)
return model
step5_train_nodule_detector.py 文件源码
python
阅读 19
收藏 0
点赞 0
评论 0
评论列表
文章目录